Projection of wildfire activity in southern California in the mid-21st century.
نویسندگان
چکیده
We estimate area burned in southern California at mid-century (2046-2065) for the Intergovernmental Panel on Climate Change (IPCC) A1B scenario. We develop both regressions and a parameterization to predict area burned in three ecoregions, and apply present-day (1981-2000) and future meteorology from the suite of general circulation models (GCMs) to these fire prediction tools. The regressions account for the impacts of both current and antecedent meteorological factors on wildfire activity and explain 40-46% of the variance in area burned during 1980-2009. The parameterization yields area burned as a function of temperature, precipitation, and relative humidity, and includes the impact of Santa Ana wind and other geographical factors on wildfires. It explains 38% of the variance in area burned over southern California as a whole, and 64% of the variance in southwestern California. The parameterization also captures the seasonality of wildfires in three ecoregions of southern California. Using the regressions, we find that area burned likely doubles in Southwestern California by midcentury, and increases by 35% in the Sierra Nevada and 10% in central western California. The parameterization suggests a likely increase of 40% in area burned in southwestern California and 50% in the Sierra Nevada by midcentury. It also predicts a longer fire season in southwestern California due to warmer and drier conditions on Santa Ana days in November. Our method provides robust estimates of area burned at midcentury, a key metric which can be used to calculate the fire-related effects on air quality, human health, and the associated costs.
منابع مشابه
Projection of wildfire activity in southern California in the mid-twenty-first century
We estimate area burned in southern California at mid-century (2046–2065) for the Intergovernmental Panel on Climate Change A1B scenario. We develop both regressions and a parameterization to predict area burned in three ecoregions, and apply present-day (1981–2000) and future meteorology from the suite of general circulation models to these fire prediction tools. The regressions account for th...
متن کاملLanguage planning
Language planning, in one way or another, is as old as human civilization. Every time that one polity invaded the territory of another, the language of the conqueror was imposed on the conquered. The Romans imposed their language across the civilized world as they knew it. In the 21st century, the practice of language planning has become increasingly sophisticated. Eng...
متن کاملEnsemble projections of wildfire activity and carbonaceous aerosol concentrations over the western United States in the mid-21st century.
We estimate future wildfire activity over the western United States during the mid-21st century (2046-2065), based on results from 15 climate models following the A1B scenario. We develop fire prediction models by regressing meteorological variables from the current and previous years together with fire indexes onto observed regional area burned. The regressions explain 0.25-0.60 of the varianc...
متن کاملSouthern Annular Mode drives multicentury wildfire activity in southern South America.
The Southern Annular Mode (SAM) is the main driver of climate variability at mid to high latitudes in the Southern Hemisphere, affecting wildfire activity, which in turn pollutes the air and contributes to human health problems and mortality, and potentially provides strong feedback to the climate system through emissions and land cover changes. Here we report the largest Southern Hemisphere ne...
متن کاملDirect and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America
Predicting wildfire under future conditions is complicated by complex interrelated drivers operating across large spatial scales. Annual area burned (AAB) is a useful index of global wildfire activity. Current and antecedent seasonal climatic conditions, and the timing of snowpack melt, have been suggested as important drivers of AAB. As climate warms, seasonal climate and snowpack co-vary in i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Climate dynamics
دوره 43 7-8 شماره
صفحات -
تاریخ انتشار 2014